Fechar

@Article{DominguesGomeRousSchn:2009:ApCoEu,
               author = "Domingues, Margarete Oliveira and Gomes, S{\^o}nia M. and 
                         Roussel, Olivier and Schneider, K",
          affiliation = "{Instituto Nacional de Pesquisas Espaciais (INPE)} and 
                         {Universidade Estadual de Campinas} and {Institut f{\"u}r 
                         Technische Chemie und Polymerchemie (TCP)} and Laboratoire de 
                         Mod{\'e}lisation en M{\'e}canique Proc{\'e}d{\'e}s Propres 
                         (M2P2), CNRS and Universit{\'e}s d'Aix-Marseille",
                title = "Space-time adaptive multiresolution methods for hyperbolic 
                         conservation laws: Applications to compressible Euler equations",
              journal = "Applied Numerical Mathematics",
                 year = "2009",
               volume = "59",
               number = "9",
                pages = "2303--2321",
                month = "Sept.",
                 note = "{Setores de Atividade: Transporte A{\'e}reo.} and 
                         Informa{\c{c}}{\~o}es Adicionais: volume 59(9) pages 2303-2321, 
                         September 2009.",
             keywords = "Adaptivity, Multiresolution, Finite volume, Runge–Kutta, Partial 
                         differential equation, Time step control.",
             abstract = "Adaptive strategies in space and time allow considerable speed-up 
                         of finite volume schemes for conservation laws, while controlling 
                         the accuracy of the discretization. In this paper, a 
                         multiresolution technique for finite volume schemes with explicit 
                         time discretization is presented. An adaptive grid is introduced 
                         by suitable thresholding of the wavelet coefficients, which 
                         maintains the accuracy of the finite volume scheme of the regular 
                         grid. Further speed-up is obtained by local scale-dependent time 
                         stepping, i.e., on large scales larger time steps can be used 
                         without violating the stability condition of the explicit scheme. 
                         Furthermore, an estimation of the truncation error in time, using 
                         embedded RungeKutta type schemes, guarantees a control of the time 
                         step for a given precision. The accuracy and efficiency of the 
                         fully adaptive method is illustrated with applications for 
                         compressible Euler equations in one and two space dimensions.",
                  doi = "10.1016/j.apnum.2008.12.018",
                  url = "http://dx.doi.org/10.1016/j.apnum.2008.12.018",
                 issn = "0168-9274",
                label = "lattes: 4693848330845067 1 DominguesGomeRousSchn:2009:ApCoEu",
           targetfile = "space time.pdf",
                  url = "http://www.sciencedirect.com/science?_ob=ArticleURL\&_udi=B6TYD-4V59VT2-8\&_user=972035\&_rdoc=1\&_fmt=\&_orig=search\&_sort=d\&view=c\&_acct=C000049643\&_version=1\&_urlVersion=0\&_userid=972035\&md5=bf072cde40dfbcb15f1c8914dc513419",
        urlaccessdate = "17 maio 2024"
}


Fechar